Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (12): 1452-1465.doi: 10.3724/SP.J.1041.2020.01452
• Reports of Empirical Studies • Previous Articles
LUO Fen1,2, WANG Xiaoqing2, CAI Yan1, TU Dongbo1()
Received:
2019-10-14
Published:
2020-12-25
Online:
2020-10-27
Contact:
TU Dongbo
E-mail:tudongbo@aliyun.com
Supported by:
LUO Fen, WANG Xiaoqing, CAI Yan, TU Dongbo. (2020). A new dual-objective CD-CAT item selection method based on the Gini index. Acta Psychologica Sinica, 52(12), 1452-1465.
CDM Model | Knowledge state generation model | item selection strategy | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
G-DINA | HO | 97.00% | 0.009 | 89.28% | 0.025 | 96.10% | 0.010 | 85.04% | 0.024 |
MV-0.8 | 97.22% | 0.004 | 93.05% | 0.011 | 97.44% | 0.008 | 92.02% | 0.014 | |
MV-0.2 | 96.84% | 0.007 | 90.78% | 0.014 | 96.35% | 0.006 | 87.51% | 0.016 | |
DINA | HO | 97.45% | 0.010 | 90.99% | 0.032 | 97.18% | 0.011 | 75.31% | 0.060 |
MV-0.8 | 97.24% | 0.011 | 93.45% | 0.017 | 97.06% | 0.010 | 91.46% | 0.023 | |
MV-0.2 | 97.57% | 0.006 | 93.76% | 0.007 | 96.93% | 0.008 | 86.23% | 0.050 | |
R-RUM | HO | 95.41% | 0.010 | 87.61% | 0.021 | 95.38% | 0.010 | 76.64% | 0.028 |
MV-0.8 | 97.09% | 0.009 | 92.45% | 0.014 | 96.82% | 0.008 | 91.67% | 0.010 | |
MV-0.2 | 96.81% | 0.008 | 87.88% | 0.022 | 96.82% | 0.012 | 80.52% | 0.038 |
Table 1 The mean value and standard deviation of the pattern match rate when test length was 20
CDM Model | Knowledge state generation model | item selection strategy | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
G-DINA | HO | 97.00% | 0.009 | 89.28% | 0.025 | 96.10% | 0.010 | 85.04% | 0.024 |
MV-0.8 | 97.22% | 0.004 | 93.05% | 0.011 | 97.44% | 0.008 | 92.02% | 0.014 | |
MV-0.2 | 96.84% | 0.007 | 90.78% | 0.014 | 96.35% | 0.006 | 87.51% | 0.016 | |
DINA | HO | 97.45% | 0.010 | 90.99% | 0.032 | 97.18% | 0.011 | 75.31% | 0.060 |
MV-0.8 | 97.24% | 0.011 | 93.45% | 0.017 | 97.06% | 0.010 | 91.46% | 0.023 | |
MV-0.2 | 97.57% | 0.006 | 93.76% | 0.007 | 96.93% | 0.008 | 86.23% | 0.050 | |
R-RUM | HO | 95.41% | 0.010 | 87.61% | 0.021 | 95.38% | 0.010 | 76.64% | 0.028 |
MV-0.8 | 97.09% | 0.009 | 92.45% | 0.014 | 96.82% | 0.008 | 91.67% | 0.010 | |
MV-0.2 | 96.81% | 0.008 | 87.88% | 0.022 | 96.82% | 0.012 | 80.52% | 0.038 |
CDM Model | Knowledge state generation model | item selection strategy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | |||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | |||
G-DINA | HO | 0.02 | 0.32 | 0.00 | 0.41 | 0.04 | 0.28 | 0.02 | 0.40 | |
MV-0.8 | 0.00 | 0.29 | 0.01 | 0.29 | 0.02 | 0.29 | 0.02 | 0.30 | ||
MV-0.2 | 0.03 | 0.27 | 0.02 | 0.32 | 0.07 | 0.27 | 0.05 | 0.42 | ||
DINA | HO | -0.08 | 0.40 | -0.02 | 0.41 | -0.14 | 0.37 | -0.05 | 0.46 | |
MV-0.8 | 0.02 | 0.34 | 0.01 | 0.32 | -0.03 | 0.35 | -0.08 | 0.35 | ||
MV-0.2 | -0.12 | 0.38 | -0.09 | 0.36 | -0.24 | 0.42 | -0.28 | 0.52 | ||
R-RUM | HO | -0.07 | 0.35 | -0.01 | 0.42 | -0.14 | 0.35 | -0.02 | 0.45 | |
MV-0.8 | 0.00 | 0.30 | -0.02 | 0.30 | -0.03 | 0.30 | -0.03 | 0.32 | ||
MV-0.2 | -0.04 | 0.31 | -0.01 | 0.43 | -0.10 | 0.29 | -0.05 | 0.51 |
Table 2 Bias and RMSE of item selection strategies when test length was 20
CDM Model | Knowledge state generation model | item selection strategy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | |||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | |||
G-DINA | HO | 0.02 | 0.32 | 0.00 | 0.41 | 0.04 | 0.28 | 0.02 | 0.40 | |
MV-0.8 | 0.00 | 0.29 | 0.01 | 0.29 | 0.02 | 0.29 | 0.02 | 0.30 | ||
MV-0.2 | 0.03 | 0.27 | 0.02 | 0.32 | 0.07 | 0.27 | 0.05 | 0.42 | ||
DINA | HO | -0.08 | 0.40 | -0.02 | 0.41 | -0.14 | 0.37 | -0.05 | 0.46 | |
MV-0.8 | 0.02 | 0.34 | 0.01 | 0.32 | -0.03 | 0.35 | -0.08 | 0.35 | ||
MV-0.2 | -0.12 | 0.38 | -0.09 | 0.36 | -0.24 | 0.42 | -0.28 | 0.52 | ||
R-RUM | HO | -0.07 | 0.35 | -0.01 | 0.42 | -0.14 | 0.35 | -0.02 | 0.45 | |
MV-0.8 | 0.00 | 0.30 | -0.02 | 0.30 | -0.03 | 0.30 | -0.03 | 0.32 | ||
MV-0.2 | -0.04 | 0.31 | -0.01 | 0.43 | -0.10 | 0.29 | -0.05 | 0.51 |
CDM Model | Knowledge state generation model | item selection strategy | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
χ2 | TOE | χ2 | TOE | χ2 | TOE | χ2 | TOE | ||
G-DINA | HO | 82.38 | 0.41 | 98.75 | 0.47 | 85.34 | 0.42 | 44.45 | 0.26 |
MV-0.8 | 69.37 | 0.36 | 77.30 | 0.39 | 77.11 | 0.39 | 53.26 | 0.29 | |
MV-0.2 | 72.50 | 0.37 | 91.36 | 0.44 | 82.94 | 0.41 | 37.08 | 0.23 | |
DINA | HO | 70.91 | 0.36 | 86.88 | 0.43 | 72.68 | 0.37 | 53.52 | 0.29 |
MV-0.8 | 56.55 | 0.31 | 66.74 | 0.35 | 58.98 | 0.32 | 59.31 | 0.32 | |
MV-0.2 | 72.11 | 0.37 | 83.17 | 0.41 | 67.31 | 0.35 | 58.41 | 0.31 | |
R-RUM | HO | 95.78 | 0.46 | 109.29 | 0.52 | 94.55 | 0.46 | 58.22 | 0.31 |
MV-0.8 | 85.70 | 0.42 | 84.99 | 0.42 | 87.92 | 0.43 | 56.27 | 0.30 | |
MV-0.2 | 88.92 | 0.44 | 105.01 | 0.50 | 95.48 | 0.46 | 60.78 | 0.32 |
Table 3 Uniformity index to the utilization of item bank when test length is 20
CDM Model | Knowledge state generation model | item selection strategy | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
χ2 | TOE | χ2 | TOE | χ2 | TOE | χ2 | TOE | ||
G-DINA | HO | 82.38 | 0.41 | 98.75 | 0.47 | 85.34 | 0.42 | 44.45 | 0.26 |
MV-0.8 | 69.37 | 0.36 | 77.30 | 0.39 | 77.11 | 0.39 | 53.26 | 0.29 | |
MV-0.2 | 72.50 | 0.37 | 91.36 | 0.44 | 82.94 | 0.41 | 37.08 | 0.23 | |
DINA | HO | 70.91 | 0.36 | 86.88 | 0.43 | 72.68 | 0.37 | 53.52 | 0.29 |
MV-0.8 | 56.55 | 0.31 | 66.74 | 0.35 | 58.98 | 0.32 | 59.31 | 0.32 | |
MV-0.2 | 72.11 | 0.37 | 83.17 | 0.41 | 67.31 | 0.35 | 58.41 | 0.31 | |
R-RUM | HO | 95.78 | 0.46 | 109.29 | 0.52 | 94.55 | 0.46 | 58.22 | 0.31 |
MV-0.8 | 85.70 | 0.42 | 84.99 | 0.42 | 87.92 | 0.43 | 56.27 | 0.30 | |
MV-0.2 | 88.92 | 0.44 | 105.01 | 0.50 | 95.48 | 0.46 | 60.78 | 0.32 |
CDM model | Knowledge state generation model | Item selection strategy | |||
---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||
G-DINA | HO | 2.27 | 0.82 | 22.27 | 0.16 |
MV-0.8 | 2.27 | 0.82 | 21.95 | 0.16 | |
MV-0.2 | 2.27 | 0.81 | 22.18 | 0.16 | |
DINA | HO | 2.27 | 0.81 | 21.96 | 0.16 |
MV-0.8 | 2.28 | 0.80 | 21.91 | 0.16 | |
MV-0.2 | 2.26 | 0.78 | 22.04 | 0.16 | |
R-RUM | HO | 2.28 | 0.86 | 21.96 | 0.16 |
MV-0.8 | 2.27 | 0.81 | 22.14 | 0.16 | |
MV-0.2 | 2.26 | 0.81 | 22.01 | 0.16 |
Table 4 Time-consuming of item selection strategies time when test length was 20 (unit: seconds)
CDM model | Knowledge state generation model | Item selection strategy | |||
---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||
G-DINA | HO | 2.27 | 0.82 | 22.27 | 0.16 |
MV-0.8 | 2.27 | 0.82 | 21.95 | 0.16 | |
MV-0.2 | 2.27 | 0.81 | 22.18 | 0.16 | |
DINA | HO | 2.27 | 0.81 | 21.96 | 0.16 |
MV-0.8 | 2.28 | 0.80 | 21.91 | 0.16 | |
MV-0.2 | 2.26 | 0.78 | 22.04 | 0.16 | |
R-RUM | HO | 2.28 | 0.86 | 21.96 | 0.16 |
MV-0.8 | 2.27 | 0.81 | 22.14 | 0.16 | |
MV-0.2 | 2.26 | 0.81 | 22.01 | 0.16 |
[1] | Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6(4), 431-444. |
[2] | Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees, Chapman & Hall / CRC, Boca Raton, FL. |
[3] | Cai, Y., Miao, Y., & Tu, D. B. (2016). The polytomously scored cognitive diagnosis computerized adaptive testing, Acta Psychologica Sinica, 48(10), 1338-1346. |
[4] | Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the renvironment. Journal of Statistical Software, 48(6), 1-29. |
[5] | Chang, H. -H., & Ying, Z. L. (1996). A global information approach to computerized adaptive testing. Applied Psychological Measurement, 20(3), 213-229. |
[6] | Chen, P., Li, Z., & Xin, T. (2011). A note on the uniformity of item bank usage in cognitive diagnostic computerized adaptive testing. Studies of Psychology and Behavior, 37(1), 212-216. |
[7] | Cheng, Y. (2007). The dual information method for item selection in cognitive diagnostic computerized adaptive testing (Unpublished Master’s thesis). University of Illinois at Urbana-Champaign. |
[8] | Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing. Psychometrika. 74(4), 619-632. |
[9] | Cheng, Y., & Chang, H. -H. (2009). The maximum priority index method for severely constrained item selection in computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 62(2), 369-383. |
[10] |
Dai, B. Y., Zhang, M. Q., & Li, G. M. (2016). Exploration of item selection in dual purpose cognitive diagnostic computerized adaptive testing: Based on the RRUM. Applied Psychological Measurement, 40(8), 625-640.
doi: 10.1177/0146621616666008 URL pmid: 29882535 |
[11] | Du, X. X. (2010). A new strategy of item selection of cognitive diagnosis computerized adaptive testing (Unpublished Master’s thesis). Jiangxi Normal University, Nanchang, China. |
[12] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[13] |
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
doi: 10.1007/BF02295640 URL |
[14] |
Fan, Z. W., Wang, C., Chang, H. -H., & Douglas, J. (2012). Utilizing response time distributions for item selection in CAT. Journal of Educational and Behavioral Statistics, 37(5), 655-670.
doi: 10.3102/1076998611422912 URL |
[15] | Han, Y. T., Gao, X. L., Wang, D. X., Cai, Y., & Tu, D. B. (2018). Item selection methods in multidimensional polytomous computerized adaptive testing. Journal of Psychological Science, 41(6), 1500-1507. |
[16] | Hartz, S. M. (2002). A bayesian framework for the unified model for assessing cognitive abilities: blending theory with practicality (Unpublished Doctoral dissertation). University of Illinois at Urbana-Champaign, Urbana-Champaign, IL. |
[17] | Hsu, C. -L., & Wang, W. -C. (2015). Variable-length computerized adaptive testing using the higher order DINA model. Journal of Educational Measurement, 52(2), 125-143. |
[18] |
Hsu, C. -L., & Wang, W. -C. (2019). Multidimensional computerized adaptive testing using non-compensatory item response theory models. Applied Psychological Measurement, 43(6), 464-480.
doi: 10.1177/0146621618800280 URL pmid: 31452555 |
[19] |
Huang, H. -Y. (2020). Utilizing response times in cognitive diagnostic computerized adaptive testing under the higher-order deterministic input, noisy ‘and’ gate model. British Journal of Mathematical and Statistical Psychology, 73(1), 109-141.
doi: 10.1111/bmsp.12160 URL pmid: 30793768 |
[20] | Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. |
[21] | Kang, H. -A., Zhang, S. S., & Chang, H. -H. (2017). Dual-objective item selection criteria in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 54(2), 165-183. |
[22] |
Kaplan, M., & de la Torre, J. (2020). A blocked-CAT procedure for CD-CAT. Applied Psychological Measurement, 44(1), 49-64.
doi: 10.1177/0146621619835500 URL pmid: 31853158 |
[23] |
Kaplan, M., de la Torre, J., & Barrada, J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
doi: 10.1177/0146621614554650 URL pmid: 29881001 |
[24] | Li, H. (2012). Statistical learning method. Beijing: Tsinghua University Press. |
[25] |
Lin, C. -J., & Chang, H. -H. (2019). Item selection criteria with practical constraints in cognitive diagnostic computerized adaptive testing. Educational and Psychological Measurement, 79(2), 335-357.
URL pmid: 30911196 |
[26] | Liu, S. C., Cai, Y., & Tu, D. B. (2018). On-the-fly constraint-controlled assembly methods for multistage adaptive testing for cognitive diagnosis. Journal of Educational Measurement, 55(4), 595-613. |
[27] | Lord, M. F. (1980). Applications of item response theory to practical testing problems. Hillsdale NJ: Erlbaum. |
[28] | Luo, F., Wang, X. Q., Ding, S. L., & Xiong, J. H. (2018). The design and selection strategies of adaptive multigroup Testing for Cognitive Diagnosis. Journal of Psychological Science, 41(3), 720-726. |
[29] | Ma, W. C., & de la Torre, J. (2020). GDINA: The generalized DINA model framework. R package version 2.7.9, https://CRAN.R-project.org/package=GDINA. |
[30] |
McGlohen, M. K., & Chang, H. -H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808-821.
URL pmid: 18697677 |
[31] | Nah, F. F. -H. (2004). A study on tolerable waiting time: How long are web users willing to wait? Behaviour and Information Technology, 23(3), 153-163. |
[32] | Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. |
[33] | Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CAs. |
[34] | Rupp, A. A., Templin, J., & Henson, R. A. (2010) Diagnostic measurement: theory, method, and application. New York: The Guilford Press. |
[35] | Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C: Applied Statistics, 51(3), 337-350. |
[36] | Tu, D. B., & Cai, Y. (2015). The Development of CD-CAT with polytomous attributes. Acta Psychologica Sinica, 47(11), 1405-1414. |
[37] | Veerkamp, W. J. J., & Berger, M. P. F. (1994). Some new item selection criteria for adaptive testing (Research Rep. 94-6). Enschede, The Netherlands: University of Twente, Department of Educational Measurement and Data Analysis. |
[38] |
Wang, C., & Chang, H. -H. (2011). Item selection in multidimensional computerized adaptive testing-gaining information from different angles. Psychometrika, 76(3), 363-384.
doi: 10.1007/s11336-011-9215-7 URL |
[39] |
Wang, C., Chang, H. -H., & Douglas, J. (2012). Combining CAT with cognitive diagnosis: A weighted item selection approach. Behavior Research Methods, 44(1), 95-109.
doi: 10.3758/s13428-011-0143-3 URL pmid: 21853408 |
[40] |
Wang, C., Chang, H. -H., & Huebner, A. (2011). Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 48(3), 255-273.
doi: 10.1111/jedm.2011.48.issue-3 URL |
[41] |
Wang, C., Zheng, C. J., & Chang, H. -H. (2014). An enhanced approach to combine item response theory with cognitive diagnosis in adaptive testing. Journal of Educational Measurement, 51(4), 358-380.
doi: 10.1111/jedm.12057 URL |
[42] | Xu, X. L., Chang, H. -H., & Douglas, J. (2003, April). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the annual meeting of National Council on Measurement in Education, Chicago, IL. |
[43] | Zhang, X. G. (2010). Pattern recognition (Third Edition). Beijing: Tsinghua University Press. |
[44] |
Zheng, C. J., & Chang, H. -H. (2016). High-efficiency response distribution-based item selection algorithms for short-length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624.
doi: 10.1177/0146621616665196 URL pmid: 29881073 |
[45] |
Zheng, C. J., He, G., & Gao, C. L. (2018). The information product methods: A unified approach to dual-purpose computerized adaptive testing. Applied Psychological Measurement, 42(4), 321-324.
doi: 10.1177/0146621617730392 URL pmid: 29882539 |
[46] |
Zheng, C. J., & Wang, C. (2017). Application of binary searching for item exposure control in cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 41(7), 561-576.
doi: 10.1177/0146621617707509 URL pmid: 29881106 |
[47] | Zhou, Z. H. (2016). Machine learning. Beijing: Tsinghua University Press. |
[1] | LIU Yanlou. Standard errors and confidence intervals for cognitive diagnostic models: Parallel bootstrap methods [J]. Acta Psychologica Sinica, 2022, 54(6): 703-724. |
[2] | GUO Lei, ZHOU Wenjie. Nonparametric methods for cognitive diagnosis to multiple-choice test items [J]. Acta Psychologica Sinica, 2021, 53(9): 1032-1043. |
[3] | TAN Qingrong, WANG Daxun, LUO Fen, CAI Yan, TU Dongbo. A high-efficiency and new online calibration method in CD-CAT based on information gain of entropy and EM algorithm [J]. Acta Psychologica Sinica, 2021, 53(11): 1286-1298. |
[4] | WANG Daxun,GAO Xuliang,CAI Yan,TU Dongbo. A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics [J]. Acta Psychologica Sinica, 2020, 52(1): 93-106. |
[5] | GUO Lei; ZHENG Chanjin; BIAN Yufang; SONG Naiqing; XIA Lingxiang. New item selection methods in cognitive diagnostic computerized adaptive testing: Combining item discrimination indices [J]. Acta Psychologica Sinica, 2016, 48(7): 903-914. |
[6] | PENG Yafeng; LUO Zhaosheng; YU Xiaofeng; GAO Chunlei; LI Yujun. The optimization of test design in Cognitive Diagnostic Assessment [J]. Acta Psychologica Sinica, 2016, 48(12): 1600-1611. |
[7] | ZHAN Peida; CHEN Ping; BIAN Yufang. Using confirmatory compensatory multidimensional IRT models to do cognitive diagnosis [J]. Acta Psychologica Sinica, 2016, 48(10): 1347-1356. |
[8] | YU Xiaofeng; LUO Zhaosheng; QIN Chunying; GAO Chunlei; LI Yujun. Joint Estimation of Model Parameters and Q-Matrix Based on Response Data [J]. Acta Psychologica Sinica, 2015, 47(2): 273-282. |
[9] | DAI Buyun; ZHANG Minqiang; JIAO Can; LI Guangming; ZHU Huawei; ZHANG Wenyi. Item Selection Using the Multiple-Strategy RRUM Based on CD-CAT [J]. Acta Psychologica Sinica, 2015, 47(12): 1511-1519. |
[10] | WANG Wenyi; DING Shuliang; SONG Lihong. Distance Discrimination Method based on Conditional Expectation in Cognitive Diagnosis [J]. Acta Psychologica Sinica, 2015, 47(12): 1499-1510. |
[11] | GUO Lei; ZHENG Chanjin; BIAN Yufang. Exposure Control Methods and Termination Rules in Variable-Length Cognitive Diagnostic Computerized Adaptive Testing [J]. Acta Psychologica Sinica, 2015, 47(1): 129-140. |
[12] | MAO Xiuzhen; XIN Tao. A Comparison of Item Selection Methods for Cognitive Diagnostic Computerized Adaptive Testing with Nonstatistical Constraints [J]. Acta Psychologica Sinica, 2014, 46(12): 1910-1922. |
[13] | MAO Xiuzhen;XIN Tao. A Comparison of Item Selection Methods for Controlling Exposure Rate in Cognitive Diagnostic Computerized Adaptive Testing [J]. Acta Psychologica Sinica, 2013, 45(6): 694-703. |
[14] | DING Shu-Liang;MAO Meng-Meng;WANG Wen-Yi;LUO Fen;CUI Ying. Evaluating the Consistency of Test Items Relative to the Cognitive Model for Educational Cognitive Diagnosis [J]. Acta Psychologica Sinica, 2012, 44(11): 1535-1546. |
[15] | WANG Wen-Yi,DING Shu-Liang,YOU Xiao-Feng. On-Line Item Attribute Identification in Cognitive Diagnostic Computerized Adaptive Testing [J]. , 2011, 43(08): 964-976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||